IQI 04, Seminar 3

Produced with pdflatex and xfig

- Oracles
- The Classical Parity Problem.
- Quantum Oracles.
- The Quantum Parity Problem.
- Gate Set Limitations.
- Universality.

E. "Manny" Knill: knill@boulder.nist.gov

olorado

Parity Oracles

• Bit strings may be identified with 0-1 vectors.

Example:

$$oldownorder (0,1,1,0)^T$$

• The parity of bitstring s is the number of 1's in s modulo 2.

Example:
$$P(1101) = (1, 1, 1, 1)(1, 1, 0, 1)^T = 3 \mod 2 = 1$$

... computations with 0-1 entities are modulo 2.

Parity of a substring.

Examples:

$$P_{\mathbf{p}}(\mathbf{s}) = \mathbf{p} \cdot \mathbf{s}$$

A parity oracle.

$$(a,b)^T$$
 $(1,0)^T$
 $(0,1)^T$

 $(p_1, p_2)(a, b)^T$ $(p_1, p_2)(1, 0)^T = p_1$ $(p_1, p_2)(0, 1)^T = p_2$

How many "queries" does it take to learn p?

Classical Oracles

• A classical oracle \mathcal{O} is a device that takes an input x and outputs an answer $\mathcal{O}(x)$.

Examples:

- $-\mathcal{O}_1(x)=1$ if x is a true statement about numbers,
 - $\mathcal{O}_1(x) = 0$ otherwise.
- $\mathcal{O}_2(x) = 1$ if x is a satisfiable logical statement,
 - $\mathcal{O}_2(x) = 0$ otherwise.
 - ... Oracles can be used to add computational power.
- $-\mathcal{O}_3(x)$ computes an unknown parity of x. Determine the parity.
- ... Oracles can act as black boxes to be analyzed.

Reversible Oracles

Reversible oracles add the answer to a register.

Simulation, using a standard oracle.

Is the simulation equivalent to a reversible oracle?

Quantum Oracles

 A Quantum Oracle is the linear extension of a classical reversible oracle.

$$\sum_{x,b} \alpha_{x,b} |x\rangle_{|b\rangle_{0}} \left\{ \sum_{x,b} \alpha_{x,b} |x\rangle_{|b} + \mathcal{O}(x)\rangle_{0} \right\}$$

- Quantum oracles versus classical reversible oracles?
 - Does it help to use a quantum computer to analyze a classical reversible oracle?

The Quantum Parity Problem

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.
 - 2. Sign kickback for oracles with one-bit answers.

 $|-\rangle$ is an eigenstate of not with eigenvalue -1.

4 TOC

The Quantum Parity Problem

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

Def.: $\begin{cases} |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ |-\rangle = \frac{1}{2}(|0\rangle - |1\rangle) \end{cases}$

- 1. Parity and the Hadamard basis.
 - Which logical states $|\mathfrak{a}\mathfrak{b}\rangle_{\!\!\!/\!\!\!\!/}$ have a minus sign in

$$|+\rangle_{A}|+\rangle_{B}, |+\rangle_{A}|-\rangle_{B}, |-\rangle_{A}|+\rangle_{B}, |-\rangle_{A}|-\rangle_{B}?$$

- **–** Ans.: States with odd parity w.r.t. the $|-\rangle$ -qubits.
- Are these states distinguishable?

The Quantum Parity Problem

- Promise: O is a quantum 2-qubit parity oracle.
 Problem: Determine the parity vector with one query.
- Solution in two tricks.

• One query suffices for solving the *n*-qubit parity problem.

Summary of Gates Introduced So Far

Gate picture	Symbol	Matrix form
0	$\mathbf{prep}(\mathfrak{o})$	
0/1 b	$\mathbf{meas}(Z {\mapsto} b)$	
	not	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
	sgn	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
н	had	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
В	$\mathbf{cnot}^{(AB)}$	$ \begin{vmatrix} \circ \circ\rangle_{_{AB}} & \circ 1\rangle_{_{AB}} & 1 1\rangle_{_{AB}} & 1 1\rangle_{_{AB}} \\ \circ 1\rangle_{_{AB}} & 0 & 1 & 0 & 0 \\ 1 1\rangle_{_{AB}} & 0 & 1 & 0 & 0 \\ 1 1\rangle_{_{AB}} & 0 & 0 & 1 & 0 \\ \end{vmatrix} $
A (0104) 2 15		8 TOC

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $-U^2 = 1.$
 - Conjugation properties...

- sgn and not: $not^{-1}.sgn.not = -sgn, sgn^{-1}.not.sgn = -not.$
- sgn and not conjugated by had. $had^{-1}.sgn.had = not, had^{-1}.not.had = sgn.$
- sgn and not conjugated by cnot.

$$\begin{split} \mathbf{cnot}^{(\mathsf{AB})^{-1}}.\mathbf{not}^{(\mathsf{B})}.\mathbf{cnot}^{(\mathsf{AB})} &= \mathbf{not}^{(\mathsf{B})},\\ \mathbf{cnot}^{(\mathsf{AB})^{-1}}.\mathbf{sgn}^{(\mathsf{A})}.\mathbf{cnot}^{(\mathsf{AB})} &= \mathbf{sgn}^{(\mathsf{A})},\\ \mathbf{cnot}^{(\mathsf{AB})^{-1}}.\mathbf{not}^{(\mathsf{A})}.\mathbf{cnot}^{(\mathsf{AB})} &= \mathbf{not}^{(\mathsf{A})}.\mathbf{not}^{(\mathsf{B})},\\ \mathbf{cnot}^{(\mathsf{AB})^{-1}}.\mathbf{sgn}^{(\mathsf{B})}.\mathbf{cnot}^{(\mathsf{AB})} &= \mathbf{sgn}^{(\mathsf{A})}.\mathbf{sgn}^{(\mathsf{B})}. \end{split}$$

TOC

Properties of Reversible Gates

- Consider not, sgn, had and cnot. They satisfy:
 - Only real coefficients.
 - $-U^2 = 1.$
 - Conjugation properties...
- Conjugating V by U gives $U^{-1}.V.U$.

- Applications: Network rearrangements.

Error effect determination.

Preservation of Products of "Flips"

 Products of not and sgn are preserved under conjugation by operators composed of cnot's and had's.

- What is the power of this gate set?

Physically Allowed Reversible Operators

 \bullet Define an operator U by linear extension of

$$U|x\rangle = \sum_{y} u_{yx}|y\rangle$$

- To be well-defined, $U|x\rangle$ must be a state:

$$\sum_{y} |u_{yx}|^2 = 1.$$

- U's linear extension must preserve states.

Consider
$$U\frac{1}{\sqrt{2}}(|x\rangle + e^{i\phi}|z\rangle) = \sum_y \frac{1}{\sqrt{2}}(u_{yx} + e^{i\phi}u_{yz})|y\rangle$$
. Hence $\sum_y \bar{u}_{yx}u_{yz} = 0$.

• U is *unitary*. In matrix form with $x \in \{1, 2, ..., N\}$:

$$\begin{pmatrix} \bar{u}_{11} & \bar{u}_{21} & \dots & \bar{u}_{N1} \\ \bar{u}_{12} & \bar{u}_{22} & \dots & \bar{u}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{u}_{1N} & \bar{u}_{2N} & \dots & \bar{u}_{NN} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1N} \\ u_{21} & u_{22} & \dots & u_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ u_{N1} & u_{N2} & \dots & u_{NN} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Should every unitary operator be implementable?

TOC

Locality Constraints on Gate Sets

- Can any n-qubit unitary operator be a gate?
 - "Good" gates are physically realizable in one step.
 - Locality: Elementary gates act on at most three qubits. The Toffoli gate: $\mathbf{c^2not}^{(ABC)} = \mathbf{if} \ A\&B \ \mathbf{then} \ \mathbf{not}^{(C)}$.

- Discreteness: Finite gate sets are preferred.
- Fault tolerance: Elementary gates should be experimentally verifiable and readily made stable.
- ...but do investigate other gate sets.

TO(

Universality for Gate Sets

- Should every unitary operator be implementable?
- A set of gates is *universal* if every unitary *n*-qubit can be implemented with a network.

- Other notions of universality:
- Allow use of ancillas and measurements.
- Allow approximation to within arbitrarily small error.

Contents

Title: IQI 04, Seminar 3	Properti
Classical Oracles	Propertie
Parity Oracles2	Preserva
Reversible Oracles	Physical
Quantum Oracles	Universa
The Quantum Parity Problem I5	Locality
The Quantum Parity Problem II 6	Referen
The Quantum Parity Problem III	
Summary of Gates Introduced So Far 8	

Properties of Reversible Gates I	. 9
Properties of Reversible Gates II	
Preservation of Products of "Flips"	11
Physically Allowed Reversible Operators	12
Universality for Gate Sets	13
Locality Constraints on Gate Sets	14
References	16

13 TOC

References	
 E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26:1411–1473, 1997. L. K. Grover. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett., 79:4709–4712, 1997. 	
 D. A. Meyer. Sophisticated quantum search without entanglement. Phys. Rev. Lett., 85:2014–2017, 2000. 	
16 TOC	
TOC	